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ABSTRACT:

In this paper, we investigate the problem of determining a
preference structure on the set of alternatives for a general class
of single-stage, choice making models with imprecisely known para-
meters. A variety of decision making problems under certainty and
under uncertainty are modeled by the general problem formulation.
The imprecisely known parameters can be, for example, attribute
trade-off weights, value scores, probabilities, and utility values.
Parameter imprecision is described by assuming that certain groups
of parameters are members of given sets. This description forms the
basis for a general and behaviorally relevant assessment model.
Solution procedures for four important special cases of the general
problem formulation are determined. A hypothetical automobile pur-
chasing problem is used to illustrate the decision aiding applica-
bility of the results. K
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I. INTRODUCTION

Analytic, normative models of decisionmaking often require precise

identification of various parameter values prior to the calculation of

a most preferred alternative. For example, the multiattribute decision

aids described by Kelly (1978) and Edwards (1977) require that the

decision maker (DM) provide attribute trade-off weights which give a

quantitative description of the relative importance of the various

objectives under consideration. As another example, the subjective

expected utility approach associated with decisionmaking problems under

risk assumes knowledge of subjective outcome probabilities for each

alternative (Spetzler, 1975). Sensitivity analysis is often used

to develop measures of confidence in the optimality of the most

preferred alternative with regards to the perceived credibility of the

identified parameter values. In practice, such sensitivity analyses

usually can deal only with the variation of a single parameter at a

time, c. f. (Kelly, 1978), although in reality several parameters are

often not known exactly and multi-parameter variations may produce

results significantly different than a direct combination of a series

of single-parametric variations (White, 1979).

Exact knowledge of parameter values has its advantages and dis-

advantages. An obvious advantage is that once all parameters are

precisely specified, a real-valued criterion will always be able to

select a most preferred alternative. A disadvantage is that precise

parameter identification, through either objective or subjective assess-

ment, can be stressful and time and effort consuming, c. f. (Fischhoff,

et. al., 1980) for studies in cognitive psychology which support this
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statement in more general contexts. Such demands, and the fact that

the DM may find the elicitation effort so strange and strained that

perspectives are lost rather than strengthened, may render the entire

decision aiding effort less than completely useful. For example,

precise determination of trade-off weights in a military crisis

management situation may require more time than is available for the

entire decision aiding process.

Interestingly, preliminary evaluation results of a recently

developed medical decision aid for diagnosing a common ambulatory

complaint (White, et. al. 1980) support the following hypothesis:

DM's may not require ider 4ification of the most preferred alternative

by a decision aid but may only require the elimination of all but a few

alternatives, with appropriate data display, in order to confidently

select a most preferred alternative for implementation. This hypothe-

sis suggests that if DM's do not necessarily find it essential to

totally order the alternatives, then it may also be unnecessary to

precisely identify all parameters. Relaxing the need to determine

all parameter values exactly, or even to elicit them, may significantly

enhance the acceptability of the decision aiding approach by reducing

the likelihood that various institutional, organizational and behavioral

constraints will be violated.

The above comments have stimulated the development of a decision

aiding approach for multiobjective decision aiding that allows the DM

to interactively determine a preferred mix of alternative discrimina-

tion specificity and parameter estimate accuracy (White and Sage, 1980,

1981). Assuming that the basic problem has already been structured,
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the general steps of this approach are as follows:

1. Eliminate as many alternatives as possible using currently

available information about the values of the imprecisely

known parameters.

2. If an alternative can be selected for implementation with-

out further alternative elimination, then stop.

3. If a choice cannot be made, then assess further information

about the values of the imprecisely known parameters and

return to Step 1.

The procedure for iteratively assessing the imprecisely known

parameters with increasing accuracy that is presented by White and

Sage (1980) appears to have substantial behavioral acceptability.

It seems likely, however, that the acceptability of the general decision

aiding approach may increase significantly with a more general

assessment model. The assessment model due to White and Sage (1980)

requires that some but not necessarily all trade-off weight ratios be

precisely specified. (In contrast, the decision aid described in

(Kelly, 1978) requires that all such trade-off weight ratios be pre-

cisely specified before search for the most preferred alternative can

begin.) Humans, however, may often find it easier and more natural

to place bounds on these ratios. The intent of this paper is to

examine the implications of allowing ratios of parameter values to

be imprecisely described in terms of upper and/or lower bounds for a

broad class of single-stage decisionmaking models.

The paper is outlined as follows. The general, single-stage

problem formulation is presented and discussed in Section 2. We note
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that this problem formulation models many multiobjective decision

making problems under risk. Five special and relevant cases of the

general problem formulation are displayed in Section 3, four of

which are treated in depth in this paper. Transitivity and set

inclusion results are determined in Sections 4 and 5, respectively.

In Section 6, we prEsent three different procedures for determining

a preference structure on the alternative set for one of the special

cases. Procedures for determining or approximating a preference

structure on the alternative set for the other three cases of

interest are presented in Section 7. In Section 8, a hypothetical

automobile purchasing problem, originally considered by White and

Sage (1980), is reconsidered in the context of the new assessment

model presented in this paper. The intent of this hypothetical

example is to illustrate the behavioral relevance of our assessment

model and several other decision aiding implications of our results.

Conclusions are presented in the final section.
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II. THE BASIC PROBLEM FORMULATION AND DISCUSSION

We now present the basic problem formulation. Let A = {1,2,...,A)

be the finite set of alternatives available to the DM. The DM is

allowed to select one alternative from A. The criterion on which

selection is based is

M N
z z nm (a) Umn (a) Pn(a) = n(a) U(a) p(a)

m=l n=l m

where n(a) c RM = n 0iR < n, m<l,..., M, s m  = 1}, p(a) E R,, and

U(a) e CMxN = {U BIRMxN: 0 < U mn < 1, m = I,..., M, n 1,..., N}.

(If n premultiplies (postmultiplies) a vector or a matrix, then n will

be considered a row (column) vector.)

We assume that there is a set A(a', a) 5 (RM x CMIN x RN)2

associated with every ordered pair (a', a) e A x A. Let A = {A(a', a):

(a', a) s A x A}.

The objective of the problem is: given A and A, determine the

subset R(A , A) 5i A x A such that (a', a) E R(A, A) if and only if

n' U' p, > n U p

for all (n', U', p', nI, U, p) E A (a', a).

The motivation for examining this general problem formulation is

that it models several important classes of single-stage decision

making problems having partially identified parameters. The most general

of these classes of problems is the multiattribute decisionmaking

problem under risk, where:
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° M is the number of attributes under consideration.

, N is the number of outcomes that can result from alternative

selection.

* rm(a) is the trade-off weight assigned to attribute m if alter-

native a is selected ( %(a) is usually assumed alternative

invariant).

" Pn(a) is the probability that outcome n will occur if alternative

a is selected.

* Umn (a) is the utility of selecting alternative a and receiving

outcome n with respect to attribute m.

* n(a) U(a)p(a) is the expected utility of selecting alternative a.

* A(a', a) represents what information is available regarding the

value of the 6-tuple {n(a'), U(a'), p(a'), n(a), U(a), p(a)}.

• R(A, A) represents what information can be induced from A and

A regarding preferences on A.

* The form of the multiattribute utility function is additive.

The set of ordered pairs R(A, A) can represent a valuable aid in

alternative selection. If there is an a' E A such that (a', a)

R(A, A) for all a c A, then a' is an optimal alternative. Additionally,

if (a, a') I R(A, A) for all a a', then a' is a unique optimal

alternative. More generally, the nondominated set of R(A, A)* is

guaranteed to contain the most preferred alternative. Thus, knowledge

Alternative aeA is said to be dominated if there is an a'cA such that
(a',a) - R(A, A) and (a,a') j R(A, A). The set of all alternatives in
A that are not dominated is called the nondominated set of R(A, A).
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of R(A, A) can enhance decisionmaking, even for the case where A does

not provide enough information to identify an optimal alternative, by

eliminating alternatives that are clearly inferior.
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III. SPECIAL CASES

We now present several specializations of the basic problem

formulation.

CASE 1. Let Al(a',a) : {n(a')} x {U(a')} x {p(a')} x {n(a)} x {U(a)}

x{p(a)} for all (a'a) £ A x A. Then n(a), U(a), and p(a) are known

precisely for all a E A. This case is a standard decision analysis

problem formulation having an additive, multiattribute utility func-

tion. If n(a) = (0,..., 1-..., 0) for all aEA, then this case is the

single attribute decision analysis problem under risk; if p(a) =

(0,..., 1,..., 0) for all acA, then this case is the multiattribute

decision analysis problem under certainty.

CASE 2. Let A2(a',a) be the set of all 6-tuples (n(a'), U(a'), p(a'),

n(a),U(a), p(a)) such that U(a'), p(a'), U(a), and p(a) are all members of

sets containing a single point (and hence are known exactly) and

n(a') = n(a) F N = {n F RM: Bn < b } 0, for given matrix B and

vector b. Thus, the trade-off weights are assumed alternative

invariant and only partially identified by linear inequalities.

If we interchange the interpretation of n and p, then this case

also considers the situation where outcome probabilities are assumed alter-

native invariant and partially identified. In fact, it will be val-

uable for us to do so for comparative purposes. Therefore, define

A2(a',a) to be the set of all 6-tuples (n(a'), U(a'), p(a'), n(a),

U(a), p(a)) such that n(a'), U(a'), n(a), U(a) are known precisely

and P(a') = p(a) c P =p c RN: C < c} =
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CASE 3. Let

A3(a', a) = s3(a') x Q3(a)

where Q 3(a) = {n (a)} x {U(a)} x P(a) and P(a) = {p RN: C(a)p <

c(a)} t 0 for given matrix C(a) and vector c(a), a e A. Thus,

trade-off weights and utilities are known exactly but the probability

mass functions are not necessarily equal and only partially identified

by linear inequalities.

CASE 4. Let

A4(a',a) : 4 (a') x 24 (a)

where

Q4 (a)= N(a) x {U(a)} x P(a)

N(a) {n :RM: B(a)n < b(a)}

P(a) = {n E RN: C(a)p < c(a)}

Thus, U(a) is known exactly but n(a) and p(a) are only imprecisely

known. This case considers the situation where both the single attribute

utility function nj(a) and the probability mass function p(a) are

only imprecisely known, where U(a) = I for all aEA.

CASE 5. Let

AB(a',a) = S5 (a') x o5 (a)

where

5 (a') = N(a) x U(a) x P(a)
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N(a) is a convex polytope described by extreme points

{nj(a), t = 1,..., L(a)}

U(a) is a convex polytope described by extreme points

{Uk(a), k = 1,..., K(a)}

P(a) C RN.

Thus, trade-off weights, outcome probabilities and utilities are all

imprecisely known.

3-3
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IV. TRANSITIVITY RESULTS

A clearly desirable characteristic of any relation concerned

with preference is transitivity.* We now present conditions on A

which imply that R(A, A) is transitive and show that these conditions

hold for all Ai, i = 12...,5.

3

THEOREM 1. Assume for any triple (a, a', a") e A such that

(a", a') E R (A, A) and (a', a) e R(A, A), the sets

{(n', U', p'): (n", U", p", n', U', p') E A (a", a')}

and

{(n', U', pT) (n', U', p', n, U, p) E: A(a', a)}"-

have nonnull intersection for all (n ", U", p", n, U,p ) s A(a", a).

Then, R(A, A) is transitive.

Proof: Assume (a", a') E R(A, A) and (a', a) e R(A, A); we wish to

show that (a", a) E R(A, A). Consider any (n", U", p", n, U, p)£ A (a",a).

By assumption, there exists a triple (i, U,p) such that

(I', U, p) ({(0' , U', p'): (n", U", p', n', U', p') E A(a",a')}

('~ (r ', U', p'): (n', U", p', Tn, U, p) E A(a',a)}.

Since (a", a'), (a', a) E R(A, A), i" U" p"> 7n U p and n U p

> n U p and hence n" U" p" > n U p. Since this result holds for

The relation R(A, A) is said to be transitive if for all a, a', and a"
such that (a", a') £ R(A, A) and (a', a) £ R(A, A), it follows that
(a", a) £ R(A, A).
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any (n ", U", p", n, U, p) e A(a", a), (a", a) E R(A , A). [j]

COROLLARY 1. R(A, A.) is transitive for i = 1,..., 5.

Proof: Throughout the proof, it is useful to note that (n ', U',

p', ni, U, p) c Ai(a', a) if and only if (n , U, p, n', U', p') E

Ai(a, a') for all (a', a) c A x A and all i = 1,..., 5.

Case 1. Trivial; in fact R(A, A,) linearly orders A.

Case 2. Note that for any (n ", U", p", n, U, p) s A2 (a", a),

{(n ' U', P') (n", U", p" ')( , , , j , U- , p - A A2 (a", a')

={(n ', ' ' n '): ( n', U , p , Tn, U, p) E A 2(a', a)}

={n (a')) x {U(a')} x {p} # 0.

The result then holds from Theorem 1.

Cases 3, 4, and 5. Note that for any (n ", U", p", n, U, p)c

A5 (a", a),

I(n ' U', p'): (n', U1 ' , , U,p ) : A5(a, a)}

{I(n U', p ' (n", U", P" n', U', p') E A5(a" a')I

= N(a') x U(a') x P(a') 0.

Thus, the hypothesis of Theorem 1 is satisfied for cases 3, 4, and 5,

since cases 3 and 4 are specializations of case 5. L-
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V. SET INCLUSION RESULTS

In this section, we derive several useful set inclusion results.

The first result, Lemma 1, suggests a general approach for decision

support. The second result, Corollary 2, has potential computational

significance. Proofs of both results follow directly from the appro-

priate definitions.

LEMMA 1. If A'C A, then RA, A)j R(A, A').

Lemma 1 suggests the following general approach to decision

aiding:

0. Set k = 0 and A° = RM X CM N  x RN .

1. Determine R(A, Ak).

2. If R(A, Ak) provides a sufficient amount of information for

alternative selection, then stop. If not, then go to Step 3.

3. Perform assessment procedures to produce Ak+l C Ak, set

k = k + 1, and go to Step 1.

We will present an application of this approach to a hypothetical

automobile purchasing example in Section 8.

We now indicate the various relationships that can exist between

the various R(A, Ai). Proof of the following corollary follows directly

from Lemma 1.

COROLLARY 2. (a) R(A, A5 ) R(A, A4 ) ; R(A, A3 ) S R(A, A,). (b) If

P S P(a) for all aEA, then R(A, A3) S R(A, A2 ) --R(A, Al).
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The operational usefulness of the results presented in Corollary 2

is that if R(A, Ai) is difficult to determine but that R(A, A.) and/or

R(A, Ak) are relatively simple to calculate and R(A, A1R(A, Ai) -

R(A, Ak), then knowledge of R(A, A.) and/or R(A, Ak) and use of the

transitivity of these relations can be helpful in aiding alternative

selection and/or mollifying the difficulty in computing R(A, Ai).
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VI. SOLUTION PROCEDURES FOR R(A, A2):

We now present three procedures for determining R(A, 2) . The

first two assume that the parameter set P is described in terms

of linear inequalities; the third procedure assumes that P is

equivalently defined as the convex hull of a finite number of

extreme points.

(a) The One-Pass Procedure. The one-pass procedure is based

in part on the so-called one-pass algorithm presented in (Smallwood

and Sondik, 1973) for a more cor'lex problem formulation.(See also

(Potter and Anderson, 1980). Our one-pass procedure is composed

of two steps:

1. Determine the set of all possible linear orders that the

alternatives can have for parameters in P.

2. Generate R(A, A2 ) from the above linear orders.

The approach used to complete Step 1 will also determine the regions

in P where each of the linear orders obtained is optimal. The

determination of such regions has obvious use in a sensitivity

analysis. We now describe each of the above two steps.

Step 1. Observe that any point in P generates a linear ordering
00

of the alternatives. For example, assume for p 0 P, y(a) p 0 y(a+l)o 0 ,

a = 1,..., A - 1, fory(a) = n(a) U(a). That is, alternative 1 is

preferred to alternative 2, which is preferred to alternative 3, and

so forth. Thus, p0 is associated with the linear order {l,..., A'.

In fact, all points in the region R° = {p c P: Ey(a) -y(a+l)] p > 0,

a = 1,..., A-l are associated with the linear order (1,..., A).
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Note that R0 is a convex polytope; procedures for determining which

constraints of the form [y(a) -y (a+l)] p > 0 are not redurJant

are surveyed in (Mattheis and Rubin, 1980). We observe that R0 is

bounded by linear inequalities describing P and R and those of the

form [y (a) - y(a+l)] p > 0. On the "other side" of the latter type

of boundary, y (a+l )p > y (a)p for some 1 < a < A-l and hence two

alternatives which are adjacent in rank for peR0 have switched

positions in the linear ordering, producing a new linear order, new

inequalities, and a new region in P having a constant linear

ordering. Clearly, this new region is also a convex polytope. The

set of all necessary inequalities for R0 of the form [ y(a) - y(a+l)]

p > 0 indicates what regions in P having a constant linear ordering

border R° . Successively examining these regions, determining their

associated linear orders, and discovering other convex polytopes having

constant linear orders will eventually produce a set {Rj} of convex

polytopes with constant linear orders which covers P; i.e., P = U . R.

The objective then becomes to take the set of linear orders associated

with the set {RJ}and produce a preference relation on the alternative

set.

Step 2. Let S be an A x A matrix composed as follows:

(i) if for any of the linear orders determined in Step 1, alter-

native a' is preferred to alternative a, then set the

(a', a) entry of S to 1; set all other entries equal to 0.

(ii) if the (a, a') and (a', a) entries are both 1, set them both

to 0.
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The matrix S, often called a subordination matrix, provides necessary

information for the construction of a domination digraph. See

(Sage, 1977) for details. Such a digraph is a graphical depiction of

R(A, 'A2). The following example illustrates the concepts presented.

EXAMPLE 1. Assume A = 4, N = 3, and

Yl(a) Y2(a) Y 3(a)

a=l 0.5 1 0

a=2 1 0.5 0.5

a=3 0.5 1 0.5

a=4 0.5 0 1

The associated domination digraph is given in Figure la, indicating

that on the basis of the three objectives under consideration and

the usual product order on R3,i.e. the assumption that p c R3,

alternative 3 dominates alternative 1. Assume the DM has revealed

preferences that indicate p1 > P3 1 P2 > P3' and P3 < 0.25. This

region in R3 is depicted graphically in Figure 2. Note that this

description of P is equivalent to the existence of a 3x3 matrix C

and a 3-vector c such that

0 .2

where P = [p E R3: CO< c).
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(a)

2 3

4

(b)

Figure 1. The Domination Digraphs for (a) R3 and (b) P for

Examples 1 and 2.
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3

3 42

R
2RI o R 2

2

Figure 2. The Set P = R°U RU R2 and the Subregions R R1, and

R2 for Examples 1 and 2.
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To start the algorithm, let p = col (0.90, 0.07, 0.03). We
00 0 0 0

note thaty (2) p0 > y(3) p >y() 0  >y (4) p0 . Let =

[p E P: y(2)p > y(3)p > y(1)p > y (4)pl. R0 is bounded by the

equality y(2) p = y(3) p. Thus, an adjacent subregion is R=

(p E P: y(3)p >y(2)p > y(l)p > y(4)p}. R is bounded by the

equality y (1) p=y (2) p and hence has an adjacent subregion

R2 = { P: y.(3)p > y(l ) p >_y (2) p >y(4) p}. Since UiR i = P,

we have completed our "one-pass" over the region P. The various

subregions of P are presented in Figure 2. The possible linear

orderings of the alternatives are therefore: {2, 3, 1, 41 for

RO , {3, 2, 1, 4} for Rl, and 3, 1, 2, 41 for R2. These linear

orders produce the following subordination matrix

0 0 0 1-

0 0 0 1

1 0 0 1

0 0 0 0 -

The resulting domination digraph is presented in Figure lb. We

observe that restricting p to P has guaranteed that both 1 and 2

now dominate 4 and that 3 continues to dominate 1.

b. The Linear Programming Approach. Define

z*(a',a) min [y(a') -y(a)]p
p EP

Clearly,

(i) (a', a) ER(A, 2) if and only if z*(a', a) > 0.
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(ii) (a', a) i R(A, A2) if and only if there exists a p c P

such that [y(a') -y(a)]p < 0.

Thus, (i) implies that the alternatives can be related by considering

the sign of the optimal criterion value of A(A-I) linear programs;

(ii) implies that if there is a basic feasible solution p such that

[y(a') -y(a)]p is negative, then the linear program evaluating the

pair (a', a) can conclude that (a', a) I R(A,'A 2 ) without having to

satisfy optimality conditions. This procedure applied to Example 1

required the consideration of 11 linear programs((3, 4) £ R(A,'2 )

was determined by transitivity from previously obtained (1, 4) E

R(A,"'2) and (3, 1) E R(A,2 )).3 of which were terminated before

completion because the criterion value went negative before optimality

conditions were satisfied. The results were in agreement with the

results of Example 1.

c. The Transformation Approach. Assume that P is described

as the convex hull of the set of (extreme) points {B

Procedures for determining {Bk} from C and c are contained in

(Mattheis and Rubin, 1980). The transformation approach for deter-

mining the domination digraph for p restricted to P is based on the

following fact: y ' >Y for all z : 1,..., L if and only if

y 'p > yp for all p F P. Note that when P = RN, it follows that

L= N, = col (0,..., .. 0) where the 1 is the z entry, and

y a > Y for all z is equivalent toy > n for all n. The above

if and only if condition suggests the following procedure:

1. Determine y(a)B" for all z and a.
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2. Construct a digraph of alternatives, based on the

relation: (a', a) E R' if and only if y(a')5' > y(a) z

z=l1...., L.

Thus, y (a) , z:I,.... L, acts like the set of value scores for

alternative a based on P.

EXAMPLE 2. Consider the problem presented in Example 1. Note that

L 4 and

k=I 2 3 4

1 0 .50 .25

a 0 1 .25 .50

0 0 .25 .25

The 6 are graphically depicted in Figure 2.

It then follows that

z= 2 3 4

¥() 1 2 1.00 1.25

y(2) 2 1 1.50 1.25

y(3)6' 1 2 1.25 1.50

y(4)62  1 0 1.00 0.75

which produces a digraph identical to the digraph in Figure lb. ED
The one-pass and the linear programming procedures are preferred

over the transformation procedure for two reasons. First, we feel

that parameter value information is more easily and more directly
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described mathematically in the form P = {p e 1: Cp < c} rather

than in terms of extreme points of P, a statement to which the

automobile purchasing example in Section 8 provides support. Second,

determining the extreme points of a set of the form P = (p E PN: Cp<c},

which is required in order to use the transformation approach,

appears generally to require considerably more computational effort

than is saved by the relative computational simplicity of the trans-

formation approach. A clear advantage of the linear programming pro-

cedure over the one-pass procedure is the relative availability of

efficient linear programming software. The one-pass approach,

however, provides more information about the ordering of the alter-

natives in that in Step 1, regions of P associated with total orders

are determined. Such information would be necessary in order to

determine how much a parameter vector would have to vary away from

the nominal in order to compromise the optimality of the most

preferred alternative relative to the nominal.
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VII. SOLUTION PROCEDURES AND APPROXIMATIONS FOR R(A, Ai), i =3,4,5.

Since Ai(a', a) = Qi(a') x 2i(a) for i = 3,4,5, a necessary and

sufficient condition for (a', a) E R(A, Ai) is

min n' U' p' > max r, U p

where the minimum is taken with respect to all (n', U', p') £ si.(a')

and the maximum is taken with respect to all (n , U, p) E 2i(a).

Therefore, in order to determine R(A, Ai), it is sufficient to solve

2A mathematical programming problems, half of which are minimization

problems and half of which are maximization problems. We now examine

cases 3, 4, and 5 on the basis of these comments.

(a) R(A, A3). The solution of

max/min n U p

for all (n, U, p) E 23 (a) is a linear program of the form

max/min yp

s.t. Cp < c

p :R N

We now illustrate the determination of R(A, A3) oith the following

example.

EXAMPLE 3. Let y be given as in Example 1, and assume that P(a) =

P for all a c A for the set P presented in Example 1. Thus, A3 is

identical to the"A 2 given in Example 1 except that p and p' are not

constrained to be equal. The solution of the requisite 8 linear pro-

grams generates the domination digraph shown in Figure 3. We note
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that by comparing Figure lb and Figure 3, R(A, A3) R(A," 2 (observe

that (3, 1) E R(A,hA2), (3, 1) R R(A, A3)), which is in agreement

with Corollary 2b. Note also that had R(A, A3) been determined

before R(A, A2), 3 of the (at most) 12 linear programs required to

determine R(A, '2) could have been eliminated. Eli

(b) R(A, A4). The solution of

max/min n U p

for all (n, U, p) Q 4 (a) is a quadratic program of the form

max/min n U p

s.t. Bn<b

Cp < C

n E RM,  p eRN .

Since the 2M x 2N matrix

is neither positive semidefinite nor negative semidefinite, the Kuhn-

Tucker conditions for both the minimization and the maximization

problems are only necessary.

The Kuhn-Tucker conditions, however, can be used to determine

upper and lower bounds on the criteria associated with the minimiza-

tion and maximization problems, respectively. These bounds can then

be used to generate a relation on A x A that bounds R(A, A4 ) from

above. Specifically, let z*(a) be an upper bound on the criterion

associated with the minimization problem for alternative a; similarly,
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Figure 3. Domination Digraph for A3 in Example 3.
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let z,(a) be a lower bound on the criterion associated with the i
maximization problem for alternative a. Define the relation R'(A, A4 )

as follows: (a', a) c R'(A, A4 ) if and only if z*(a') > z,(a). Note

that R'(A, A4 ) is transitive if z,(a) L z*(a) for all a e A. Clearly,

if (a', a) E R(A, A4 ), then (a', a) E R'(A, A4 ), which leads to the

following addition to Corollary 2.

LEMMA 2. R(A, A4) § R'(A, A4) and hence R(A, A4 )!g R'(A, A4) ('%

R(A, A3).

The following example illustrates determination of R'(A, A4).

EXAMPLE 4. Consider the problem stated in Example 3 except that

0.40 < Y2(2) = 0.60

0.40 < Y3(2) <0.60

0.40 < yi(3) <0.60

0.40< Y 3(3) <0.60

Thus, both utilities and probabilities are imprecisely known and

can be alternative dependent. The concomitant domination digraph,

determined using the solutions of the associated quadratic programming

problems, is presented in Figure 4. We note that {(l, 4)} = R'(A, A4).

It then follows from Lemma 2 that R(A, A4 ) C {(l, 4)}. L--

(c) R(A, A5 ). The solution of

max/min n U p

for all (n, U, P)E Q5(a) is in general more difficult then the mathe-

matical programming problems associated with the determination of
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Figure 4. Domination Digraph for R'(A, A4 ) in Example 4.
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R(A, Ai), i = 1,..., 4. It is possible, however, to construct a

specially structured A such that R(A, A)!R(A, A,) and such that

R(A, A) can be determined using the quadratic programming procedure

develored for determining R(A, A.). We define such a A after pre-

senting the following result.

LEMMA 3. Let N5 RM and U CMxN be convex polytopes having extreme

points {n£, £=I,.., L} and {Uk, k = Q,..., K}, respectively. Define

r = {n U: n c N, U E U} and H to be the convex hull of { n U

I~,..., L, k=l..... K }. Then, r9 H. Additionally, assume that

r is convex. Then r = H.

PROOF: Assumey c r. Then, there is a n ; N and a U E U such that y=nU.

Since both N and U are both convex polytopes, there exist {X c R L and

{0 e R K such that n 
= E 9 n and U k kU . Note thaty = nU

a X k n Uk and that {x k} E RLxK. Thus, y c H.

If r is convex and contains the extreme points of H, then H r

and hence r = H. El
Let r(a) = {nU: n £N(a), U E U(a)}, and define Q (a) = r(a) x

(I} x P(a) and A4(a', a) = Q4(a') x Q4(a). Relax the assumption that

r(a) C RN to r(a)C_ CN. Let H(a) be the convex hull of {n (a) uk (a):

= 1, .... L(a), k=l,... , K(a)}, where {nt(a): £=l,..., L(a)} and

{uk(a); k 1,..., K(a)} are the extreme points for N(a) and U(a),

respectively. Define Qj(a) = H (a) x {I} x P(a) and A"(a', a) = Q(a') x

R7- (a).
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COROLLARY 3. R(A, AC R(A, A ) : R(A, A5 ). If r(a) is convex for

all a e A, then R(A, Aj) = R(A, A5).

PROOF. The proof follows from Lemmas 1 and 3. Fi

Corollary 3 indicates that a properly constructed A can generate

a lower bound on R(A, A5 ) which may determine R(A, A5 ) exactly and

that R(A, A) can be approximated using the quadratic programming

procedure used for determining R(A, A4).

EXAMPLE 5. Consider the problem stated in Example 4 which we modify

as follows. Let n(a) = y(a) for all a E A, and assume

1 0 0

U(a) 0 u2 2  0

0 0 1

where 0.9 <u22 < 1.0. Redefine y(a) : n(a) U(a). Then,

yl(1) = 0.5 0.9 < y 2 (l) < 1.0 y 3 (l) 0

yl(2) = 1 0.36 <y 2(2) < 0.6 0.4 <Y 3(2) < 0.6

0.4 <y 1 (3) < 0.6 0.9 < j(3) < 1 0.4 <y 3(3) < 0.6

yl(4) = 0.5 y2(4) = 0 y3 (4) :1

Thus, r(a) is convex for all a c A and R(A, A4) = R(A, A5) from

Corollary 3. Computations show that the parameter value imprecision

is sufficient to imply that no alternative dominates any other alter-

native; thus, R(A, A5) = 0. Eli
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VIII. AN EXAMPLE APPLICATION

We now reexamine the hypothetical automobile purchasing problem

presented by White and Sage (1980). This problem is modeled by Case

2 for the special case where N = 1, i.e. the decision making under

certainty case. The objectives hierarchy is displayed in Figure 5.

Each box corresponds to an attribute and an associated trade-off

weight as described in Table 1. Each attribute corresponds to an

objective; e.g. the attribute "safety" corresponds to the objective

"maximize safety." When there is no confusion, we will use the

attribute name as an abreviated notation for the associated objective.

The objectives hierarchy indicates what objectives can be

decomposed into "lower level" objectives. For example, "cost"

is composed of "initial cost", "operating cost", and "resale value".

Table 2 presents value scores for each of the six (6) automobiles

under consideration for each of the lowest level objectives A through

H. We assume that these value scores have been assessed from a

well-informed DM. Since we note that the value score associated with

alternative 1 is at least as great as the value score associated

with alternative 5 for each lowest level objective, alternative 1

is preferred to alternative 5 no matter what trade-off weights are

applied, i.e. (1, 5) c R(A, A2 ) for P = R8. Similarly, (2, 6)

R(A, A 2) for P = R8. A graphical depiction of this preference

information is presented in Figure 6 in the form of a domination

digraph. Figure 6 indicates that there are four candidates for the

most preferred automobile, cars 1, 2, 3, and 4, and since the objective
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TABLE 1

ATTRIBUTE NAMES AND ASSOCIATED WEIGHTS

Attribute Name Weight

A safety P1

B initial cost P2

C fuel economy 03

D scheduled maintenance expenses P4

E expected unscheduled maintenance expenses P5

F resale value P6

G attractiveness P7

H trunk and passenger compartment capacity P8

A-H overall desirability pl+...+p 8

C-E operating cost P3+"4 +P5

B-F cost p2+..+p6
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Figure 5. Objectives Hierarchy for the Automobile Purchasing Example
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Table 2. Value Scores for Lowest Level Objectives

VALUE SCORES FOR OBJECTIVES

A B C D E F G H

x 70 100 65 40 80 10 100 60

x2  100 40 70 30 100 100 10 100

x 60 35 10 35 10 10 40 50

x 50 0 100 100 0 90 10 100

X 65 40 0 40 75 0 30 55

x6  0 35 60 0 90 40 0 0
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is to select the single most preferred automobile, cars 5 and 6

can be excluded from further consideration.

If the DM can select his or her most preferred alternative

from the set {, 2, 3, 41, then the decision aiding process can

stop. If not, additional preference information must be assessed in

order to reduce the nondominated set of alternatives. Assume

the DM first decides to express his or her preferences regarding

the "cost" branch of the objectives hierarchy. Assume that in

evaluating the relative merits of fuel economy (objective C) and

scheduled maintenance expenses (objective D), the OM finds the

difference in fuel economy between the car with the highest fuel

economy (car 4) and the car with the lowest fuel economy (car 5)

to be less important than the difference in scheduled maintenance

expenses between the car with the highest scheduled maintenance

expenses and the car with the lowest scheduled maintenance expenses.

More succinctly, scheduled maintenance expenses are relatively at

least as important as fuel economy. This preference might have a

variety of explanations, e.g. all of the cars under consideration give

relatively high, and relatively similar, miles per gallon. We express

this preference mathematically as P3 < 04. Using similar arguments,

assume also that the DM expresses other preferences that can be

modeled by the following inequalities:

P4 < P5

P3 + 04 + P5 < 02 0 6

Thus, expected unscheduled maintenance expense is considered relatively

at least as important as scheduled maintenance expense, and resale
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Figure 6. Domination Digraph for Table 2.
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value is considered relatively at least as important as initial

cost which in turn is considered relatively at least as important

as operating cost. These inequalities produce the following C

matrix and c vector:

0 0 0 -1 0 0 0 01 [o
C 0 0 0 1 -1 0 0 0 c =

1 0 0 0 -1 0 0 0
0-1 1 1 1 1 0 0

The associated domination digraph is given in Fig. 7, indicating

that search for the most preferred automobile can be restricted to

cars 1 and 2.

If the DM cannot or wishes not to decide between cars 1 and

car 2, further preference information must be assessed. Assume

that the DM has the following preferences:

(i) Trunk and passenger compartment capacity is relatively

at least twice as important as attractiveness.

(ii) Safety is relatively at least twice as important as trunk

and passenger compartment capacity and attractiveness

combined.

(ii-) Cost is relatively at least twice as important as trunk

and passenger compartment capacity and attractiveness

combined.

Thus,
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Figure 7. Domination Digraph for the Automobile Purchasing Example
After the First Set of Preference Inequalities.
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P8 > 2 p7

P1  >2 (P7 + P8)

P2 +P3 +P4 +P5 +P6 L 2 (P7 + P8)

producing the following C matrix and c vector:

0 0 1 -1 0 0 0 0 0

0 0 0 1 -l 0 0 0 0

0 1 0 0 0 -1 0 0 0

C= 0 -1 1 1 1 0 0 0 c= 0

0 0 0 0 0 0 2 -l 0

-l 0 0 0 0 0 2 2 0

0 -1 -l -l -l -1 2 2 0

The resulting domination digraph is shown in Figure 8, indicating that

car 2 is the most preferred. We remark that this selection was made

without having to be precise about ratios of the form pi/ pj, as may be

required in (White and Sage, 1980), and without having to trade-off

some relatively controversial objectives, e.g. comparing the relative

worth of safety and cost.

The solution procedure used for this problem was the linear programming

approach. Solution of the 30 requisite linear programs required 12.3

CPU seconds before the trade-off and 13.5 CPU seconds after the trade-

off of the University of Virginia CDC 6400. We would expect these

figures to at most double if the process of constructing the criteria

for the linear programs was built into the software. We feel such computer

times are quite adequate for interactive decision aiding.
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Figure 8. Domination Digraph for the Automobile Purchasing Example
After the Second Set of Preference Inequalities.
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IX. CONCLUSIONS

A general model of single-stage decisionmaking has been formulated

and analyzed. The criterion was composed of alternative dependent

parameters having values that may be only partially known. Four special

cases of imprecise parameter information were considered in detail and

solution or approximation techniques determined for them. These

special cases model an important variety of choicemaking situations

involving imprecisely known parameter values. A hypothetical automobile

purchasing example was used to illustrate the potential of the decision

aiding procedure implied by one of the special cases.

REFERENCES

Edwards, W., "How to Use Multiattribute Utility Measurement for Social
Decisionmaking," IEEE Trans. Systems, Man, and Cybernetics, SMC-7,
pp. 326-339, May, 1977.

Fischhoff, B., Goitein, B., and Shipera, Z., "The Expected Utility of
Expected Utility Approaches," Command and Control Decision and
Forecasting Systems Program, Tech. Report PTR-1091-80-4, April,
1980.

Kelly, C. W., "Decision Aids: Engineering Science and Clinical Art",
Technical Report, Decisions and Designs, Inc., McLean, VA., 1978.

Matheiss, T. H., and Rubin, D. S., "A Survey and Comparison of Methods
for Finding All Vertices of Convex Polyhedral Sets," Math. O.R.,
5, pp. 167-185, 1980.

Potter, J. M., and Anderson, B. D. 0., "Partial Prior Information and
Decisionmaking," IEEE Trans. Systems, Man, and Cybernetics, SMC-IO,
pp. 125-133, 1980.

Sage, A. P., Methodology for Large-Scale Systems New York, McGraw-
Hill, 1977.

Smallwood, R. D., and Sondik, E. J., "The Optimal Control of Partially
Observable Markov Processes Over a Finite Horizon," Operations
Research, 21, 1300-22, 1973.

9-1



Spetzler, C. S., and Stael von Holstein, C-A. S., "Probability Encoding
in Decision Analysis," Management Science, 22, pp. 340-358, 1975.

White, C. C., "Multi-parametric Sensitivity in Decision Making Under
Uncertainty," Computers and Biomedical Research, 12, pp. 125-130,
1979.

White, C. C., Wilson, E. C., and Weaver, A. C., "Decision Aid Develop-
ment for Use in Ambulatory Health Care Settings," Dept. of Applied
Math. and Comp. Science, Tech. Report, University of Virginia,
1980.

White, C. C., and Sage, A. P., "A Multiple Objective Optimization Based
Approach to Choicemaking," IEEE Trans. Systems, Man, and Cybernetics,
SMC-IO, pp. 315-326, 1980.

White, C. C., and Sage, A. P., "Multiple Objective Evaluation and
Choicemaking Under Risk with Partial Preference Information,"
Systems Engineering Research Rep. 81-2, University of Virginia,
1981.

9-2



A. DISTRIBUTION LIST

OSD Department of the Navy

CDR Paul R. Chatelier Commanding Officer
Office of the Deputy Under Secretary ONR Eastern/Central Regional Office

of Defense ATTN: Dr. J. Lester
OUSDRE (E&LS) Building 114, Section D
Pentagon, Room 3D129 666 Summer Street
Washington, D.C. 20301 Boston, MA 02210

Commanding Officer
Department of the Navy ONR Branch Office

ATTN: Dr. C. Davis
Director 536 South Clark Street
Engineering Psychology Programs Chicago, IL 60605
Code 455
Office of Naval Research Commanding Officer
800 North Quincy Street ONR Western Regional Office
Arlington, VA 22217 (5 cys) ATTN: Dr. E. Gloye

1030 East Green Street
Director Pasadena, CA 91106
Operations Research Programs
Code 434 Office of Naval Research
Office of Naval Research Scientific Liaison Group
800 North Quincy Street American Embassy, Room A-407
Arlington, VA 22217 APO San Francisco, CA 96503

Director Director
Statistics and Probability Program Naval Research Laboratory
Code 436 Technical Information Division
Office of Naval Research Code 2627
800 North Quincy Street Washington, D.C. 20375 (6 cys)

Arlington, VA 22217
Dr. Bruce Wald

Director Communications Sciences Division
Information Systems Program Code 7500
Code 437 Naval Research Laboratory
Office of Naval Research Washington, D.C. 20375
800 North Quincy Street
Arlington, VA 22217 Dr. Robert G. Smith

Office of the Chief of Naval

Code 430B Operations, OP987H

Office of Naval Research Personnel Logistics Plans
800 North Quincy Street Washington, D.C. 20350

Arlington, VA 22217
Naval Training Equipment Center

LCDR W. Moroney ATTN: Technical Library
Code 554P Orlando, FL 32813
Naval Postgraduate School
Monterey, CA 93940



Department of the Navy Department of the Navy

Human Factors Department Dr. Gary Poock
Code N215 Operations Research Department
Naval Training Equipment Center Naval Postgraduate School
Orlando, FL 32813 Monterey, CA 93940

Dr. Alfred F. Smode Dean of Research Administration
Training Analysis and Evaluation Naval Postgraduate School

Group Monterey, CA 93940
Naval Training Equipment Center
Code N-OOT Mr. Warren Lewis
Orlando, FL 32813 Human Engineering Branch

Code 8231
Dr. George Moeller Naval Ocean Systems Center
Human Factors Engineering Branch San Diego, CA 92152
Submarine Medical Research Lab
Naval Submarine Base Dr. A. L. Slafkosky
Groton, CT 06340 Scientific Advisor

Commandant of the Marine Corps
Dr. James McGrath, Code 302 Code RD-1
Navy Personnel Research and Washington, D.C. 20380

Development Center
San Diego, CA 92152

Department of the Army
Navy Personnel Research and

Development Center Mr. J. Barber
Planning and Appraisal HQS, Department of the Army
Code 04 DAPE-MBR
San Diego, CA 92152 Washington, D.C. 20310

Navy Personnel Research and Dr. Joseph Zeidner
Development Center Technical Director

Management Systems, Code 303 U.S. Army research Institute
San Diego, CA 92152 5001 Eisenhower Avenue

Alexandria, VA 22333
Navy Personnel Research and

Development Center Director, Organizations and
Performance Measurement and Systems Research Laboratory

Enhancement U.S. Army Research Institute
Code 309 5001 Eisenhower Avenue
San Diego, CA 92152 Alexandria, VA 22333

CDR P. M. Curran
Code 604 Department of the Air Force
Human Factors Engineering Division
Naval Air Development Center U.S. Air Force Office of Scientific
Warminster, PA 18974 Research

Life Sciences Directorate, NL

Dean of the Academic Departments Bolling Air Force Base
U.S. Naval Academy Washington, D.C. 20332
Annapolis, MD 21402



Department of the Air Force Other Government Agencies

Dr. Donald A. Topmiller Defense Technical Information Center
Chief, Systems Engineering Branch Cameron Station, Bldg. 5
Human Engineering Division Alexandria, VA 22314 (12 cys)
USAF AMRL/HES
Wright-Patterson AFB, OH 45433 Dr. Craig Fields

Director, Cybernetics Technology
Air University Library Office
Maxwell Air Force Base, AL 36112 Defense Advanced Research Projects

Agency
Dr. Erl Alluuisi 1400 Wilson Blvd
Chief Scientist Arlington, VA 22209
AFHRL/CCN
Brooks AFB, TX 78235 Dr. Judith Daly

Cybernetics Technology Office
Defense Advanced Research Projects

Foreign Addresses Agency

1400 Wilson Blvd
North East London Polytechnic Arlington, VA 22209
The Charles Myers Library
Livingstone Road
Stratford Other Organizations
London E15 2LJ
ENGLAND Dr. Gary McClelland

Institute of Behavioral Sciences
Professor Dr. Carl Graf Hoyos University of Colorado
Institute for Psychology Boulder, CO 80309
Technical University
8000 Munich Dr. Miley Merkhofer
Arcisstr 21 Stanford Research Institute
FEDERAL REPUBLIC OF GERMANY Decision Analysis Group

Menlo Park, CA 94025
Dr. Kenneth Gardner
Applied Psychology Unit Dr. Jesse Orlansky
Admiralty Marine Technology Institute for Defense Analyses

Establishment 400 Army-Navy Drive
Teddington, Middlesex TWll OLN Arlington, VA 22202
ENGLAND

Professor Judea Pearl
Director, Human Factors Wing Engineering Systems Department
Defence & Civil Institute of University of California-Los Angeles
Environmental Medicine 405 Hilgard Avenue

Post Office Box 2000 Los Angeles, CA 90024
Dowsnview, Ontario M3M 3B9
CANADA Professor Howard Raiffa

Graduate School of Business
Dr. A. D. Baddeley Administration
Director, Applied Psychology Unit Harvard University
Medical Research Council Soldiers Field Road
15 Chaucer Road Boston, MA 02163
Cambridge, CB2 2EF, ENGLAND



Other Organizations Other Organizations

Dr. Arthur I. Siegel Dr. William Howell
Applied Psychological Services, Inc. Department of Psychology
404 East Lancaster Street Rice University
Wayne, PA 19087 Houston, TX 77001

Dr. Paul Slovic Journal Supplement Abstract Service
Decision Research American Psychological Association
1201 Oak Street 1200 17th Street, N.W.
Eugene, OR 97401 Washington, D.C. 20036 (3 cys)

Dr. Amos Tversky Dr. John Payne
Department of Psychology Duke University
Stanford University Graduate School of Business
Stanford, CA 94305 Administration

Durham, NC 27706
Dr. Robert T. Hennessy
NAS- National Research Council Dr. Baruch Fischhoff
JH #819 Decision Research
2101 Constitution Avenue, N.W. 1201 Oak Street
Washington, D.C. 20418 Eugene, OR 97401

Dr. M. G. Samet Dr. Leonard Adelman
Perceptronics, Inc. Decisions and Designs, Inc.
6271 Variel Avenue 8400 Westpark Drive, Suite 600
Woodland Hills, CA 91364 P. 0. Box 907

McLean, VA 22101
Dr. Meredith P. Crawford
American Psychological Association Dr. Lola Lopes
Office of Educational Affairs Department of Psychology
1200 17th Street, N.W. University of Wisconsin
Washington, D.C. 20036 Madison, WI 53706

Dr. Ward Edwards
Director, Social Science Research

Institute
University of Southern California
Los Angeles, CA 90007

Dr. Charles Gettys
Department of Psychology
University of Oklahoma
455 West Lindsey
Norman, OK 73069

Dr. Kenneth Hammond
Institute of Behavioral Science
University of Colorado
Room 201
Boulder, CO 80309

MOWN-



UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment
of approximately 1,400 students with a graduate enrollment of approximately 600 There are 125 faculty
members, a majority of whom conduct research in addition to teaching.

Research is an integral part of the educational program and interests parallel academic specialties. These
range from the classical engineering departments of Chemical. Civil, Electrical, and Mechanical and
Aerospace to departments of Biomedical Engineering, Engineering Science and Systems, Materials
Science, Nuclear Engineering and Engineering Physics, and Applied Mathematics and Computer Science.
In addition to these departments, there are interdepartmental groups in the areas of Automatic Controls and
Applied Mechanics. All departments offer the doctorate; the Biomedical and Materials Science
Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximately 1,530
full-time faculty with a total enrollment of about 16,000 full-time students), which also has professional
schools of Architecture, Law, Medicine, Commerce, Business Administration, and Education. In addition,
the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others
relevant to the engineering research program This University community provides opportunities for
interdisciplinary work in pursuit of the basic goals of education, research, and public service,



PAT-I


